49 research outputs found

    Does having a twin-brother make for a bigger brain?

    Get PDF
    Objective: Brain volume of boys is larger than that of girls by ∼10%. Prenatal exposure to testosterone has been suggested in the masculinization of the brain. For example, in litter-bearing mammals intrauterine position increases prenatal testosterone exposure through adjacent male fetuses, resulting in masculinization of brain morphology. Design: The influence of intrauterine presence of a male co-twin on masculinization of human brain volume was studied in 9-year old twins. Methods: Magnetic resonance imaging brain scans, current testosterone, and estradiol levels were acquired from four groups of dizygotic (DZ) twins: boys from same-sex twin-pairs (SSM), boys from opposite-sex twin-pairs (OSM), girls from opposite-sex twin-pairs (OSF), and girls from same-sex twin-pairs (SSF; n=119 individuals). Data on total brain, cerebellum, gray and white matter volumes were examined. Results: Irrespective of their own sex, children with a male co-twin as compared to children with a female co-twin had larger total brain (+2.5%) and cerebellum (+5.5%) volumes. SSM, purportedly exposed to the highest prenatal testosterone levels, were found to have the largest volumes, followed by OSM, OSF and SSF children. Birth weight partly explained the effect on brain volumes. Current testosterone and estradiol levels did not account for the volumetric brain differences. However, the effects observed in children did not replicate in adult twins. Conclusions: Our study indicates that sharing the uterus with a DZ twin brother increases total brain volume in 9-year olds. The effect may be transient and limited to a critical period in childhood. © 2009 European Society of Endocrinology

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    White Matter Development in Early Puberty: A Longitudinal Volumetric and Diffusion Tensor Imaging Twin Study

    Get PDF
    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ∼85%), surface area (∼85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = –0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization

    The Cerebellum Link to Neuroticism: A Volumetric MRI Association Study in Healthy Volunteers

    Get PDF
    Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Pubertal maturation and sex steroids are related to alcohol use in adolescents

    No full text
    a b s t r a c t a r t i c l e i n f o Adolescents often show risk-taking behavior, including experimentation with alcohol. Previous studies have shown that advanced pubertal maturation is related to increased alcohol use in adolescents, even when controlling for age. Little is known about the underlying mechanisms of this relation between pubertal maturation and alcohol use. The goal of the present study was twofold. In Experiment 1, we investigated whether advanced pubertal maturation is associated with higher levels of alcohol use, when controlling for age. To this end, questionnaires on pubertal development and alcohol use were administered to a large sample of 797 Dutch adolescents (405 boys) aged 11-16 years. In Experiment 2, we explored whether sex steroids contribute to this relation between pubertal maturation and alcohol use by examining the association between salivary sex steroid levels and alcohol use in 168 adolescents (86 boys). It was found that, when controlling for age, advanced pubertal maturation is related to increased alcohol use in adolescent boys and girls. Controlling for age, higher testosterone and estradiol levels correlated with the onset of alcohol use in boys. In addition, higher estradiol levels were associated with a larger quantity of alcohol use in boys. Correlations between sex steroids and alcohol use were not significant in girls. These findings show that advanced pubertal maturation is related to advanced alcohol use, and that higher sex steroid levels could be one of the underlying mechanisms of this relation in boys. Sex steroids might promote alcohol use by stimulating brain regions implicated in reward processing

    Longitudinal changes in adolescent risk-taking: A comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior

    No full text
    Prior studies have highlighted adolescence as a period of increased risk-taking, which is postulated to result from an overactive reward system in the brain. Longitudinal studies are pivotal for testing these brain-behavior relations because individual slopes are more sensitive for detecting change. The aim of the current study was twofold: (1) to test patterns of age-related change (i.e., linear, quadratic, and cubic) in activity in the nucleus accumbens, a key reward region in the brain, in relation to change in puberty (self-report and testosterone levels), laboratory risk-taking and self-reported risk-taking tendency; and (2) to test whether individual differences in pubertal development and risk-taking behavior were contributors to longitudinal change in nucleus accumbens activity. We included 299 human participants at the first time point and 254 participants at the second time point, ranging between ages 8–27 years, time points were separated by a 2 year interval. Neural responses to rewards, pubertal development (self-report and testosterone levels), laboratory risk-taking (balloon analog risk task; BART), and self-reported risk-taking tendency (Behavior Inhibition System/Behavior Activation System questionnaire) were collected at both time points. The longitudinal analyses confirmed the quadratic age pattern for nucleus accumbens activity to rewards (peaking in adolescence), and the same quadratic pattern was found for laboratory risk-taking (BART). Nucleus accumbens activity change was further related to change in testosterone and self-reported reward-sensitivity (BAS Drive). Thus, this longitudinal analysis provides new insight in risk-taking and reward sensitivity in adolescence: (1) confirming an adolescent peak in nucleus accumbens activity, and (2) underlining a critical role for pubertal hormones and individual differences in risk-taking tendency

    Neural mechanisms underlying risk and ambiguity attitudes

    Get PDF
    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants (n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals’ risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways

    Gambling for self, friends, and antagonists: Differential contributions of affective and social brain regions on adolescent reward processing

    No full text
    Adolescence is a time of increasing emotional arousal, sensation-seeking and risk-taking, especially in the context of peers. Recent neuroscientific studies have pinpointed to the role of the ventral striatum as a brain region which is particularly sensitive to reward, and to 'social brain' regions, such as the medial prefrontal cortex (mPFC), the precuneus, and the temporal parietal junction, as being particularly responsive to social contexts. However, no study to date has examined adolescents' sensitivity to reward across different social contexts. In this study we examined 249 participants between the ages 8 and 25, on a monetary reward-processing task. Participants could win or lose money for themselves, their best friend and a disliked peer. Winning for self resulted in a mid- to late adolescent specific peak in neural activation in the ventral striatum, whereas winning for a disliked peer resulted in a mid- to late adolescent specific peak in the mPFC. Our findings reveal that ventral striatum and mPFC hypersensitivity in adolescence is dependent on social context. Taken together, these results suggest that increased risk-taking and sensation seeking observed in adolescence might not be purely related to hyperactivity of the ventral striatum, but that these behaviors are probably strongly related to the social context in which they occur
    corecore